Postdoctoral Researchers


Dr Konstantinos Bakis

Dr Konstantinos Bakis

Konstantinos received his DPhil in Engineering Science from University of Oxford in 2016. He was later awarded a one-year JSPS Postdoctoral Fellowship to conduct research at University of Kyoto on bluff body fluid-structure interaction phenomena. He received a Master degree from Princeton University and Diploma from the National Technical University of Athens. His background is in the dynamics and control of flexible structures, fluid-structure interactions and reduced order models. He is interested in applying such theoretical background and numerical methodologies to the problems of multiphase flow-induced vibrations and fluid-structure interactions in subsea applications.  

Dr Hossein Zanganeh

Dr Hossein Zanganeh

Hossein received his PhD in Offshore Engineering from University of Strathclyde in 2015. He has developed the computationally-efficient reduced-order phenomenological models for 2D/3D vortex-induced vibrations (VIV) of rigid and flexible structures, providing a unified framework for the analysis and prediction of VIV phenomena. He also carried out some VIV tests. He was a Postdoctoral Researcher at Universities of Strathclyde and Nottingham, working on different projects funded by offshore industries and the EU. He is now interested in the research of combined internal/external flow-induced vibrations and their overall fluid-structure coupling mechanisms.

Dr Lyes Kahouadji

Dr Lyes Kahouadji

Lyes has been developing in-house codes for numerical simulations of multiphase flows by using the front-tracking and domain decomposition methods. The solver can run on a variety of computer architectures ranging from laptops to supercomputers, including the modules for the flow interactions with the immersed solid objects, contact line dynamics, species and thermal transport with phase changes. Some relevant disciplines include the falling liquid film, droplet impact, direct numerical simulation, multiphase flow, parallel or distributed processing, interface dynamics and front tracking, atomization, and microfluidics.

Dr Claire Heaney

Dr Claire Heaney

Claire has worked at Imperial on the EPSRC ‘Smart Geo-Wells’ project focusing on the numerical prediction of optimal drilling strategies for extracting geo-thermal energy, at Cardiff University on computational homogenisation, and at Durham University on meshless methods. Her PhD at Cardiff investigated the effect of wave-packet disturbances on a 2D boundary layer, focusing on the weakly nonlinear regime. Her research interests span several areas include reduced order modelling, calculating error bounds for parameters derived from computational homogenisation, quasi-continuum method, error estimation and adaptive mesh refinement; meshless methods in geo-mechanics.